Bookmarks
How Good Are Low-bit Quantized LLaMA3 Models? An Empirical Study
Meta's LLaMA family has become one of the most powerful open-source Large
Language Model (LLM) series. Notably, LLaMA3 models have recently been released
and achieve impressive performance across various with super-large scale
pre-training on over 15T tokens of data. Given the wide application of low-bit
quantization for LLMs in resource-limited scenarios, we explore LLaMA3's
capabilities when quantized to low bit-width. This exploration holds the
potential to unveil new insights and challenges for low-bit quantization of
LLaMA3 and other forthcoming LLMs, especially in addressing performance
degradation problems that suffer in LLM compression. Specifically, we evaluate
the 10 existing post-training quantization and LoRA-finetuning methods of
LLaMA3 on 1-8 bits and diverse datasets to comprehensively reveal LLaMA3's
low-bit quantization performance. Our experiment results indicate that LLaMA3
still suffers non-negligent degradation in these scenarios, especially in
ultra-low bit-width. This highlights the signif...
Subcategories
- applications (15)
- computer_architecture (1)
- ethics (1)
- expert_systems (2)
- game_ai (5)
- knowledge_representation (4)
- machine_learning (324)
- natural_language_processing (3)
- planning_and_scheduling (2)
- robotics (2)
- software_development (1)
- theory (1)